Quality Assurance at Every Stage in a Process

Copyright 2002 William Bliss

Objective

This document discusses many areas where QA, whether done by QA staff or other professionals, can help improve add value at every step of a development project.

Initial Discussions

1. Set realistic Client expectations. Make sure the services offered can be performed in the time frame promised. Head off unrealistic customer demands. The main point here is for those who negotiate with clients to know what can and cannot be delivered so that unrealistic expectations are not made and so that off-base customer desires are translated into practical and do-able tasks. This is primarily an ongoing process of briefing, learning and general communication between negotiators and all technical and practice groups so that negotiators are well armed. QA can contribute to this base of knowledge, as can all the practices. The caution is to not agree to goals unless it is know that the goals can be achieved. Technical claims must be verified by technical professionals. Timetables must be realistic.

2. Capture pre-project benchmarks – the “before”. The customers, and we, need to have a clear knowledge of the starting point so that the actual benefit we deliver in capacity, performance, functionality and content can be demonstrated as having been accomplished. Good “before” data is also valuable to the initial planning. QA is able to provide a significant portion of the technical measures.

3. Design the project to simplify testing and verification. In addition to planning to the customer’s desired business goals, where possible, projects should be planned to optimize the tasks of development, QA and documentation.

QA The Deal

4. Nail down the customer acceptance criteria before you sign the paper. Any subsequent changes should be a new negotiation with agreement and understanding all around. Build in a process to handle criteria changes within the initial criteria agreement. Make sure that all relevant departments agree to the feasibility of the criteria and changes before signing. Have a clear definition of what the completed project will look like so you’ll know when you are done. Have a definition of deliverables and of performance requirements of the final version.

Create the Plan

5. Coordinate Test Planning and Development Planning

a. Since testing and documentation depend heavily on the user interface, try to have development stabilize the UI behavior as early as possible and try not to make changes thereafter.

b. Schedule development tasks so that testing can begin as soon as possible (the UI can have placeholders for future functionality, for example). This often means doing the easy stuff first if it represents the bulk of the project and tackling the difficult part second. If difficult parts are a small portion of the whole project, let the testers get to work on the larger bulk first.

c. Build into the project or the code ways to simplify testing and retesting. This includes ways to delete and reinstall databases, or recreate user environments so that a clean test bed and be regenerated. It may involve building in code hooks that are just there for testing. Often this means building in API just for testing and verification purposes. It also means building in unit testing in each function that can verify that a given function continues to work as designed after every time the code is recompiled. Consider building in diagnostics that tell if the program has been corrupted in use or is configured correctly. Customer service might be greatly simplified if a user can run a diagnostic program and send the result to Customer service.
d. Re-use modules that have already been proven on other projects and have already-developed test plans and perhaps automation.

e. At the earliest point, architects and developers should brief testers as to what is coming and what parts scare them the most.

6. Set realistic development schedules. Be pessimistic about production time, resource availability and capabilities - for our customers as well as ourselves. This is similar to #1 but happens at the planning phase. As an industry, we will always be short-handed and overbooked. Doing one job after another superficially will not help our reputation. It is better to set overly pessimistic expectations and then beat them than to come up short on an overly optimistic promise. QA people are the least optimistic about production schedules as they are the ones that are on the end of the chain (other than packaging and delivery) and get squeezed the most by delays.

7. Plan the testing - Who will design the testing? Who will write the detailed plans? Who will do the testing? Starting when? Finishing when? With limited resources – booking resources must be done as early as possible. And if schedules slip, this will have a ripple effect on all related downstream projects. In a fully staffed QA department, this would be a specific QA responsibility.

8. Anticipate contingencies. If the schedule slips. This is a big one. All too often if a project is late, the final testing time is cut without moving the deadline, sacrificing quality for delivery date – this usually costs more than it saves as the most expensive bugs are the ones you ship. One of the best (most realistic) rules of thumb I’ve seen is to plan for all creative development work to complete at the midway point of a schedule and spend the remaining 50% of the schedule debugging and fine-tuning.

9. Nail down the development and testing environment – have it agreed upon and in place before you start. This often means three working environments. One for development work (which changes constantly), one for functional QA testing (which should not change more than once a week), and one for load/performance testing and site tuning, (which should not change more than once a week, either but is modified as needed in its own process).

10. Schedule Resources. If there are many teams and people working on multiple projects, time must be booked like at a Doctor’s office – plan for and reserve time for slippage as well, or your resources will be committed to other projects come the original ship date. Even in a one-project shop, specifically book time and don’t presume availability.
11. Anticipate and plan for all training that team members will need in order to develop and test the project. Identify what skills will be needed and survey team members to see who has them and who needs to gain them.

Implement the Testing

12. Start testing early – find problems early when they’re cheapest. Bring the UI on line early and keep it stable. Use placeholders (stubs) to represent functionality that will come on line later, allowing test design to proceed and UI problems to be fixed early. If you can, do all the easy stuff early so it can be in test mode while the difficult stuff is worked out.

13. Mainstream testing: Track bugs and fixes – retest fixes – establish a high level of quality and keep it there – each new build must be as good as or better than the previous one. Plan a regular review and have a strategy for bug fix prioritizing. Do not adopt the policy of doing all the development work first and then fix bugs at the end. That causes code to be written to run on buggy code. Test it as soon as you write it.

14. Web sites, client/server processes, and database-based programs present a multitude of areas to be tested, each requiring specialized knowledge and experience.

a. User-perspective functionality – tested through the browser or UI

b. Server-side functionality

c. Customer site testing

d. Security Testing – this hard-to-find skill may have to be outsourced.
15. Write good bug reports. Whatever system you use to track bugs, reports need to clearly explain the observed problem and how to reproduce it. If appropriate, attach or reference screen shots, test files and code dumps. It can’t be fixed if it can’t be reproduced.

16. Develop reusable strategies – learn from each project and apply to the next. Look for parts of tools and processes that apply across many projects. Software test automation might be applicable in reusable settings but don’t look to this as a certainty.

Final Testing

17. Build in time to completely retest the entire product after development is completed – often called regression testing. If a show-stopper is found, plan to completely retest again after it is fixed.

18. Verify final signoff of project. Have we met the agreed-upon acceptance criteria? What is the final deliverable and how do we prove that the delivered copy is the same as the one we tested on our system?

Use QA thinking even if you don’t have trained QA resources available.

When no QA persons are there, here is a recap of some of the key ideas to add a QA perspective to steps in a process.

· Plan the additional questions and considerations that will instill quality thinking at the earliest stages.

· In addition to focusing on getting it done, focus on verifying that it is done as planned.

· Set realistic and achievable expectations about the technology and the testing capacity.

· Set realistic and pessimistic development schedules so that they don’t run over time and require hyper-expensive emergency procedures at the end.

· Ensure that someone is taking responsibility for seeing that things are tested alone and in conjunction with connected pieces. Self-checks, check lists, etc. are good methods.

· Ensure that someone is taking responsibility for seeing that all processes are being followed.

· Plan and initiate the testing well in advance of development start-up.

· Try to design and develop to complement the testing process.

· Try to bring easier functionality on line early for early testing.

· Try to stabilize the User Interface at the earliest point so others can work with a stable platform. Use stubs/place holders where necessary so that the appearance of the UI can be in place.

· Provide at least three separate working environments: development, functional testing, and stress testing.

· If you need resources outside your group, discuss them and book their time as early as possible.

· Even if there are no QA resources available, to do the actual work, leverage their experience in your planning.

· Be diligent about reporting problems early and in clear repeatable detail.
	Printed April 25, 2002
	Quality Assurance at every stage in a Process.doc
	Page 1 of 4

